.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "intermediate/mario_rl_tutorial.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_intermediate_mario_rl_tutorial.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_intermediate_mario_rl_tutorial.py:


Train a Mario-playing RL Agent
================

Authors: `Yuansong Feng <https://github.com/YuansongFeng>`__, `Suraj
Subramanian <https://github.com/suraj813>`__, `Howard
Wang <https://github.com/hw26>`__, `Steven
Guo <https://github.com/GuoYuzhang>`__.


This tutorial walks you through the fundamentals of Deep Reinforcement
Learning. At the end, you will implement an AI-powered Mario (using
`Double Deep Q-Networks <https://arxiv.org/pdf/1509.06461.pdf>`__) that
can play the game by itself.

Although no prior knowledge of RL is necessary for this tutorial, you
can familiarize yourself with these RL
`concepts <https://spinningup.openai.com/en/latest/spinningup/rl_intro.html>`__,
and have this handy
`cheatsheet <https://colab.research.google.com/drive/1eN33dPVtdPViiS1njTW_-r-IYCDTFU7N>`__
as your companion. The full code is available
`here <https://github.com/yuansongFeng/MadMario/>`__.

.. figure:: /_static/img/mario.gif
   :alt: mario

.. GENERATED FROM PYTHON SOURCE LINES 32-36

.. code-block:: bash

    %%bash
    pip install gym-super-mario-bros==7.4.0

.. GENERATED FROM PYTHON SOURCE LINES 38-60

.. code-block:: default


    import torch
    from torch import nn
    from torchvision import transforms as T
    from PIL import Image
    import numpy as np
    from pathlib import Path
    from collections import deque
    import random, datetime, os, copy

    # Gym is an OpenAI toolkit for RL
    import gym
    from gym.spaces import Box
    from gym.wrappers import FrameStack

    # NES Emulator for OpenAI Gym
    from nes_py.wrappers import JoypadSpace

    # Super Mario environment for OpenAI Gym
    import gym_super_mario_bros



.. GENERATED FROM PYTHON SOURCE LINES 61-84

RL Definitions
""""""""""""""""""

**Environment** The world that an agent interacts with and learns from.

**Action** :math:`a` : How the Agent responds to the Environment. The
set of all possible Actions is called *action-space*.

**State** :math:`s` : The current characteristic of the Environment. The
set of all possible States the Environment can be in is called
*state-space*.

**Reward** :math:`r` : Reward is the key feedback from Environment to
Agent. It is what drives the Agent to learn and to change its future
action. An aggregation of rewards over multiple time steps is called
**Return**.

**Optimal Action-Value function** :math:`Q^*(s,a)` : Gives the expected
return if you start in state :math:`s`, take an arbitrary action
:math:`a`, and then for each future time step take the action that
maximizes returns. :math:`Q` can be said to stand for the “quality” of
the action in a state. We try to approximate this function.


.. GENERATED FROM PYTHON SOURCE LINES 87-99

Environment
""""""""""""""""

Initialize Environment
------------------------

In Mario, the environment consists of tubes, mushrooms and other
components.

When Mario makes an action, the environment responds with the changed
(next) state, reward and other info.


.. GENERATED FROM PYTHON SOURCE LINES 99-116

.. code-block:: default


    # Initialize Super Mario environment (in v0.26 change render mode to 'human' to see results on the screen)
    if gym.__version__ < '0.26':
        env = gym_super_mario_bros.make("SuperMarioBros-1-1-v0", new_step_api=True)
    else:
        env = gym_super_mario_bros.make("SuperMarioBros-1-1-v0", render_mode='rgb', apply_api_compatibility=True)

    # Limit the action-space to
    #   0. walk right
    #   1. jump right
    env = JoypadSpace(env, [["right"], ["right", "A"]])

    env.reset()
    next_state, reward, done, trunc, info = env.step(action=0)
    print(f"{next_state.shape},\n {reward},\n {done},\n {info}")



.. GENERATED FROM PYTHON SOURCE LINES 117-148

Preprocess Environment
------------------------

Environment data is returned to the agent in ``next_state``. As you saw
above, each state is represented by a ``[3, 240, 256]`` size array.
Often that is more information than our agent needs; for instance,
Mario’s actions do not depend on the color of the pipes or the sky!

We use **Wrappers** to preprocess environment data before sending it to
the agent.

``GrayScaleObservation`` is a common wrapper to transform an RGB image
to grayscale; doing so reduces the size of the state representation
without losing useful information. Now the size of each state:
``[1, 240, 256]``

``ResizeObservation`` downsamples each observation into a square image.
New size: ``[1, 84, 84]``

``SkipFrame`` is a custom wrapper that inherits from ``gym.Wrapper`` and
implements the ``step()`` function. Because consecutive frames don’t
vary much, we can skip n-intermediate frames without losing much
information. The n-th frame aggregates rewards accumulated over each
skipped frame.

``FrameStack`` is a wrapper that allows us to squash consecutive frames
of the environment into a single observation point to feed to our
learning model. This way, we can identify if Mario was landing or
jumping based on the direction of his movement in the previous several
frames.


.. GENERATED FROM PYTHON SOURCE LINES 148-216

.. code-block:: default



    class SkipFrame(gym.Wrapper):
        def __init__(self, env, skip):
            """Return only every `skip`-th frame"""
            super().__init__(env)
            self._skip = skip

        def step(self, action):
            """Repeat action, and sum reward"""
            total_reward = 0.0
            for i in range(self._skip):
                # Accumulate reward and repeat the same action
                obs, reward, done, trunk, info = self.env.step(action)
                total_reward += reward
                if done:
                    break
            return obs, total_reward, done, trunk, info


    class GrayScaleObservation(gym.ObservationWrapper):
        def __init__(self, env):
            super().__init__(env)
            obs_shape = self.observation_space.shape[:2]
            self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8)

        def permute_orientation(self, observation):
            # permute [H, W, C] array to [C, H, W] tensor
            observation = np.transpose(observation, (2, 0, 1))
            observation = torch.tensor(observation.copy(), dtype=torch.float)
            return observation

        def observation(self, observation):
            observation = self.permute_orientation(observation)
            transform = T.Grayscale()
            observation = transform(observation)
            return observation


    class ResizeObservation(gym.ObservationWrapper):
        def __init__(self, env, shape):
            super().__init__(env)
            if isinstance(shape, int):
                self.shape = (shape, shape)
            else:
                self.shape = tuple(shape)

            obs_shape = self.shape + self.observation_space.shape[2:]
            self.observation_space = Box(low=0, high=255, shape=obs_shape, dtype=np.uint8)

        def observation(self, observation):
            transforms = T.Compose(
                [T.Resize(self.shape), T.Normalize(0, 255)]
            )
            observation = transforms(observation).squeeze(0)
            return observation


    # Apply Wrappers to environment
    env = SkipFrame(env, skip=4)
    env = GrayScaleObservation(env)
    env = ResizeObservation(env, shape=84)
    if gym.__version__ < '0.26':
        env = FrameStack(env, num_stack=4, new_step_api=True)
    else:
        env = FrameStack(env, num_stack=4)



.. GENERATED FROM PYTHON SOURCE LINES 217-227

After applying the above wrappers to the environment, the final wrapped
state consists of 4 gray-scaled consecutive frames stacked together, as
shown above in the image on the left. Each time Mario makes an action,
the environment responds with a state of this structure. The structure
is represented by a 3-D array of size ``[4, 84, 84]``.

.. figure:: /_static/img/mario_env.png
   :alt: picture



.. GENERATED FROM PYTHON SOURCE LINES 230-245

Agent
"""""""""

We create a class ``Mario`` to represent our agent in the game. Mario
should be able to:

-  **Act** according to the optimal action policy based on the current
   state (of the environment).

-  **Remember** experiences. Experience = (current state, current
   action, reward, next state). Mario *caches* and later *recalls* his
   experiences to update his action policy.

-  **Learn** a better action policy over time


.. GENERATED FROM PYTHON SOURCE LINES 245-268

.. code-block:: default



    class Mario:
        def __init__():
            pass

        def act(self, state):
            """Given a state, choose an epsilon-greedy action"""
            pass

        def cache(self, experience):
            """Add the experience to memory"""
            pass

        def recall(self):
            """Sample experiences from memory"""
            pass

        def learn(self):
            """Update online action value (Q) function with a batch of experiences"""
            pass



.. GENERATED FROM PYTHON SOURCE LINES 269-272

In the following sections, we will populate Mario’s parameters and
define his functions.


.. GENERATED FROM PYTHON SOURCE LINES 275-285

Act
--------------

For any given state, an agent can choose to do the most optimal action
(**exploit**) or a random action (**explore**).

Mario randomly explores with a chance of ``self.exploration_rate``; when
he chooses to exploit, he relies on ``MarioNet`` (implemented in
``Learn`` section) to provide the most optimal action.


.. GENERATED FROM PYTHON SOURCE LINES 285-335

.. code-block:: default



    class Mario:
        def __init__(self, state_dim, action_dim, save_dir):
            self.state_dim = state_dim
            self.action_dim = action_dim
            self.save_dir = save_dir

            self.device = "cuda" if torch.cuda.is_available() else "cpu"

            # Mario's DNN to predict the most optimal action - we implement this in the Learn section
            self.net = MarioNet(self.state_dim, self.action_dim).float()
            self.net = self.net.to(device=self.device)

            self.exploration_rate = 1
            self.exploration_rate_decay = 0.99999975
            self.exploration_rate_min = 0.1
            self.curr_step = 0

            self.save_every = 5e5  # no. of experiences between saving Mario Net

        def act(self, state):
            """
        Given a state, choose an epsilon-greedy action and update value of step.

        Inputs:
        state(LazyFrame): A single observation of the current state, dimension is (state_dim)
        Outputs:
        action_idx (int): An integer representing which action Mario will perform
        """
            # EXPLORE
            if np.random.rand() < self.exploration_rate:
                action_idx = np.random.randint(self.action_dim)

            # EXPLOIT
            else:
                state = state[0].__array__() if isinstance(state, tuple) else state.__array__()
                state = torch.tensor(state, device=self.device).unsqueeze(0)
                action_values = self.net(state, model="online")
                action_idx = torch.argmax(action_values, axis=1).item()

            # decrease exploration_rate
            self.exploration_rate *= self.exploration_rate_decay
            self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)

            # increment step
            self.curr_step += 1
            return action_idx



.. GENERATED FROM PYTHON SOURCE LINES 336-349

Cache and Recall
----------------------

These two functions serve as Mario’s “memory” process.

``cache()``: Each time Mario performs an action, he stores the
``experience`` to his memory. His experience includes the current
*state*, *action* performed, *reward* from the action, the *next state*,
and whether the game is *done*.

``recall()``: Mario randomly samples a batch of experiences from his
memory, and uses that to learn the game.


.. GENERATED FROM PYTHON SOURCE LINES 349-390

.. code-block:: default



    class Mario(Mario):  # subclassing for continuity
        def __init__(self, state_dim, action_dim, save_dir):
            super().__init__(state_dim, action_dim, save_dir)
            self.memory = deque(maxlen=100000)
            self.batch_size = 32

        def cache(self, state, next_state, action, reward, done):
            """
            Store the experience to self.memory (replay buffer)

            Inputs:
            state (LazyFrame),
            next_state (LazyFrame),
            action (int),
            reward (float),
            done(bool))
            """
            def first_if_tuple(x):
                return x[0] if isinstance(x, tuple) else x
            state = first_if_tuple(state).__array__()
            next_state = first_if_tuple(next_state).__array__()

            state = torch.tensor(state, device=self.device)
            next_state = torch.tensor(next_state, device=self.device)
            action = torch.tensor([action], device=self.device)
            reward = torch.tensor([reward], device=self.device)
            done = torch.tensor([done], device=self.device)

            self.memory.append((state, next_state, action, reward, done,))

        def recall(self):
            """
            Retrieve a batch of experiences from memory
            """
            batch = random.sample(self.memory, self.batch_size)
            state, next_state, action, reward, done = map(torch.stack, zip(*batch))
            return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()



.. GENERATED FROM PYTHON SOURCE LINES 391-408

Learn
--------------

Mario uses the `DDQN algorithm <https://arxiv.org/pdf/1509.06461>`__
under the hood. DDQN uses two ConvNets - :math:`Q_{online}` and
:math:`Q_{target}` - that independently approximate the optimal
action-value function.

In our implementation, we share feature generator ``features`` across
:math:`Q_{online}` and :math:`Q_{target}`, but maintain separate FC
classifiers for each. :math:`\theta_{target}` (the parameters of
:math:`Q_{target}`) is frozen to prevent updation by backprop. Instead,
it is periodically synced with :math:`\theta_{online}` (more on this
later).

Neural Network
~~~~~~~~~~~~~~~~~~

.. GENERATED FROM PYTHON SOURCE LINES 408-450

.. code-block:: default



    class MarioNet(nn.Module):
        """mini cnn structure
      input -> (conv2d + relu) x 3 -> flatten -> (dense + relu) x 2 -> output
      """

        def __init__(self, input_dim, output_dim):
            super().__init__()
            c, h, w = input_dim

            if h != 84:
                raise ValueError(f"Expecting input height: 84, got: {h}")
            if w != 84:
                raise ValueError(f"Expecting input width: 84, got: {w}")

            self.online = nn.Sequential(
                nn.Conv2d(in_channels=c, out_channels=32, kernel_size=8, stride=4),
                nn.ReLU(),
                nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
                nn.ReLU(),
                nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
                nn.ReLU(),
                nn.Flatten(),
                nn.Linear(3136, 512),
                nn.ReLU(),
                nn.Linear(512, output_dim),
            )

            self.target = copy.deepcopy(self.online)

            # Q_target parameters are frozen.
            for p in self.target.parameters():
                p.requires_grad = False

        def forward(self, input, model):
            if model == "online":
                return self.online(input)
            elif model == "target":
                return self.target(input)



.. GENERATED FROM PYTHON SOURCE LINES 451-486

TD Estimate & TD Target
~~~~~~~~~~~~~~~~~~~~~~~~~~

Two values are involved in learning:

**TD Estimate** - the predicted optimal :math:`Q^*` for a given state
:math:`s`

.. math::


   {TD}_e = Q_{online}^*(s,a)

**TD Target** - aggregation of current reward and the estimated
:math:`Q^*` in the next state :math:`s'`

.. math::


   a' = argmax_{a} Q_{online}(s', a)

.. math::


   {TD}_t = r + \gamma Q_{target}^*(s',a')

Because we don’t know what next action :math:`a'` will be, we use the
action :math:`a'` maximizes :math:`Q_{online}` in the next state
:math:`s'`.

Notice we use the
`@torch.no_grad() <https://pytorch.org/docs/stable/generated/torch.no_grad.html#no-grad>`__
decorator on ``td_target()`` to disable gradient calculations here
(because we don’t need to backpropagate on :math:`\theta_{target}`).


.. GENERATED FROM PYTHON SOURCE LINES 486-509

.. code-block:: default



    class Mario(Mario):
        def __init__(self, state_dim, action_dim, save_dir):
            super().__init__(state_dim, action_dim, save_dir)
            self.gamma = 0.9

        def td_estimate(self, state, action):
            current_Q = self.net(state, model="online")[
                np.arange(0, self.batch_size), action
            ]  # Q_online(s,a)
            return current_Q

        @torch.no_grad()
        def td_target(self, reward, next_state, done):
            next_state_Q = self.net(next_state, model="online")
            best_action = torch.argmax(next_state_Q, axis=1)
            next_Q = self.net(next_state, model="target")[
                np.arange(0, self.batch_size), best_action
            ]
            return (reward + (1 - done.float()) * self.gamma * next_Q).float()



.. GENERATED FROM PYTHON SOURCE LINES 510-533

Updating the model
~~~~~~~~~~~~~~~~~~~~~~

As Mario samples inputs from his replay buffer, we compute :math:`TD_t`
and :math:`TD_e` and backpropagate this loss down :math:`Q_{online}` to
update its parameters :math:`\theta_{online}` (:math:`\alpha` is the
learning rate ``lr`` passed to the ``optimizer``)

.. math::


   \theta_{online} \leftarrow \theta_{online} + \alpha \nabla(TD_e - TD_t)

:math:`\theta_{target}` does not update through backpropagation.
Instead, we periodically copy :math:`\theta_{online}` to
:math:`\theta_{target}`

.. math::


   \theta_{target} \leftarrow \theta_{online}



.. GENERATED FROM PYTHON SOURCE LINES 533-552

.. code-block:: default



    class Mario(Mario):
        def __init__(self, state_dim, action_dim, save_dir):
            super().__init__(state_dim, action_dim, save_dir)
            self.optimizer = torch.optim.Adam(self.net.parameters(), lr=0.00025)
            self.loss_fn = torch.nn.SmoothL1Loss()

        def update_Q_online(self, td_estimate, td_target):
            loss = self.loss_fn(td_estimate, td_target)
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()
            return loss.item()

        def sync_Q_target(self):
            self.net.target.load_state_dict(self.net.online.state_dict())



.. GENERATED FROM PYTHON SOURCE LINES 553-556

Save checkpoint
~~~~~~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 556-570

.. code-block:: default



    class Mario(Mario):
        def save(self):
            save_path = (
                self.save_dir / f"mario_net_{int(self.curr_step // self.save_every)}.chkpt"
            )
            torch.save(
                dict(model=self.net.state_dict(), exploration_rate=self.exploration_rate),
                save_path,
            )
            print(f"MarioNet saved to {save_path} at step {self.curr_step}")



.. GENERATED FROM PYTHON SOURCE LINES 571-574

Putting it all together
~~~~~~~~~~~~~~~~~~~~~~~~~~


.. GENERATED FROM PYTHON SOURCE LINES 574-611

.. code-block:: default



    class Mario(Mario):
        def __init__(self, state_dim, action_dim, save_dir):
            super().__init__(state_dim, action_dim, save_dir)
            self.burnin = 1e4  # min. experiences before training
            self.learn_every = 3  # no. of experiences between updates to Q_online
            self.sync_every = 1e4  # no. of experiences between Q_target & Q_online sync

        def learn(self):
            if self.curr_step % self.sync_every == 0:
                self.sync_Q_target()

            if self.curr_step % self.save_every == 0:
                self.save()

            if self.curr_step < self.burnin:
                return None, None

            if self.curr_step % self.learn_every != 0:
                return None, None

            # Sample from memory
            state, next_state, action, reward, done = self.recall()

            # Get TD Estimate
            td_est = self.td_estimate(state, action)

            # Get TD Target
            td_tgt = self.td_target(reward, next_state, done)

            # Backpropagate loss through Q_online
            loss = self.update_Q_online(td_est, td_tgt)

            return (td_est.mean().item(), loss)



.. GENERATED FROM PYTHON SOURCE LINES 612-615

Logging
--------------


.. GENERATED FROM PYTHON SOURCE LINES 615-723

.. code-block:: default


    import numpy as np
    import time, datetime
    import matplotlib.pyplot as plt


    class MetricLogger:
        def __init__(self, save_dir):
            self.save_log = save_dir / "log"
            with open(self.save_log, "w") as f:
                f.write(
                    f"{'Episode':>8}{'Step':>8}{'Epsilon':>10}{'MeanReward':>15}"
                    f"{'MeanLength':>15}{'MeanLoss':>15}{'MeanQValue':>15}"
                    f"{'TimeDelta':>15}{'Time':>20}\n"
                )
            self.ep_rewards_plot = save_dir / "reward_plot.jpg"
            self.ep_lengths_plot = save_dir / "length_plot.jpg"
            self.ep_avg_losses_plot = save_dir / "loss_plot.jpg"
            self.ep_avg_qs_plot = save_dir / "q_plot.jpg"

            # History metrics
            self.ep_rewards = []
            self.ep_lengths = []
            self.ep_avg_losses = []
            self.ep_avg_qs = []

            # Moving averages, added for every call to record()
            self.moving_avg_ep_rewards = []
            self.moving_avg_ep_lengths = []
            self.moving_avg_ep_avg_losses = []
            self.moving_avg_ep_avg_qs = []

            # Current episode metric
            self.init_episode()

            # Timing
            self.record_time = time.time()

        def log_step(self, reward, loss, q):
            self.curr_ep_reward += reward
            self.curr_ep_length += 1
            if loss:
                self.curr_ep_loss += loss
                self.curr_ep_q += q
                self.curr_ep_loss_length += 1

        def log_episode(self):
            "Mark end of episode"
            self.ep_rewards.append(self.curr_ep_reward)
            self.ep_lengths.append(self.curr_ep_length)
            if self.curr_ep_loss_length == 0:
                ep_avg_loss = 0
                ep_avg_q = 0
            else:
                ep_avg_loss = np.round(self.curr_ep_loss / self.curr_ep_loss_length, 5)
                ep_avg_q = np.round(self.curr_ep_q / self.curr_ep_loss_length, 5)
            self.ep_avg_losses.append(ep_avg_loss)
            self.ep_avg_qs.append(ep_avg_q)

            self.init_episode()

        def init_episode(self):
            self.curr_ep_reward = 0.0
            self.curr_ep_length = 0
            self.curr_ep_loss = 0.0
            self.curr_ep_q = 0.0
            self.curr_ep_loss_length = 0

        def record(self, episode, epsilon, step):
            mean_ep_reward = np.round(np.mean(self.ep_rewards[-100:]), 3)
            mean_ep_length = np.round(np.mean(self.ep_lengths[-100:]), 3)
            mean_ep_loss = np.round(np.mean(self.ep_avg_losses[-100:]), 3)
            mean_ep_q = np.round(np.mean(self.ep_avg_qs[-100:]), 3)
            self.moving_avg_ep_rewards.append(mean_ep_reward)
            self.moving_avg_ep_lengths.append(mean_ep_length)
            self.moving_avg_ep_avg_losses.append(mean_ep_loss)
            self.moving_avg_ep_avg_qs.append(mean_ep_q)

            last_record_time = self.record_time
            self.record_time = time.time()
            time_since_last_record = np.round(self.record_time - last_record_time, 3)

            print(
                f"Episode {episode} - "
                f"Step {step} - "
                f"Epsilon {epsilon} - "
                f"Mean Reward {mean_ep_reward} - "
                f"Mean Length {mean_ep_length} - "
                f"Mean Loss {mean_ep_loss} - "
                f"Mean Q Value {mean_ep_q} - "
                f"Time Delta {time_since_last_record} - "
                f"Time {datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S')}"
            )

            with open(self.save_log, "a") as f:
                f.write(
                    f"{episode:8d}{step:8d}{epsilon:10.3f}"
                    f"{mean_ep_reward:15.3f}{mean_ep_length:15.3f}{mean_ep_loss:15.3f}{mean_ep_q:15.3f}"
                    f"{time_since_last_record:15.3f}"
                    f"{datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'):>20}\n"
                )

            for metric in ["ep_rewards", "ep_lengths", "ep_avg_losses", "ep_avg_qs"]:
                plt.plot(getattr(self, f"moving_avg_{metric}"))
                plt.savefig(getattr(self, f"{metric}_plot"))
                plt.clf()



.. GENERATED FROM PYTHON SOURCE LINES 724-730

Let’s play!
"""""""""""""""

In this example we run the training loop for 10 episodes, but for Mario to truly learn the ways of
his world, we suggest running the loop for at least 40,000 episodes!


.. GENERATED FROM PYTHON SOURCE LINES 730-777

.. code-block:: default

    use_cuda = torch.cuda.is_available()
    print(f"Using CUDA: {use_cuda}")
    print()

    save_dir = Path("checkpoints") / datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
    save_dir.mkdir(parents=True)

    mario = Mario(state_dim=(4, 84, 84), action_dim=env.action_space.n, save_dir=save_dir)

    logger = MetricLogger(save_dir)

    episodes = 10
    for e in range(episodes):

        state = env.reset()

        # Play the game!
        while True:

            # Run agent on the state
            action = mario.act(state)

            # Agent performs action
            next_state, reward, done, trunc, info = env.step(action)

            # Remember
            mario.cache(state, next_state, action, reward, done)

            # Learn
            q, loss = mario.learn()

            # Logging
            logger.log_step(reward, loss, q)

            # Update state
            state = next_state

            # Check if end of game
            if done or info["flag_get"]:
                break

        logger.log_episode()

        if e % 20 == 0:
            logger.record(episode=e, epsilon=mario.exploration_rate, step=mario.curr_step)



.. GENERATED FROM PYTHON SOURCE LINES 778-784

Conclusion
"""""""""""""""

In this tutorial, we saw how we can use PyTorch to train a game-playing AI. You can use the same methods
to train an AI to play any of the games at the `OpenAI gym <https://gym.openai.com/>`__. Hope you enjoyed this tutorial, feel free to reach us at
`our github <https://github.com/yuansongFeng/MadMario/>`__!


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.000 seconds)


.. _sphx_glr_download_intermediate_mario_rl_tutorial.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: mario_rl_tutorial.py <mario_rl_tutorial.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: mario_rl_tutorial.ipynb <mario_rl_tutorial.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_